Molecular Cleft Reactivity and Conformational Properties of Skeletally Stabilized Triphosphazanes

Susan M. Young, Abbas Tarassoli,^{1a} Joseph M. Barendt,^{1b} Christopher A. Squiers,^{1c} **Francoise Bartbelemy, Riley Scbaeffer, R. Curtis Haltiwanger, and Arlan D. Norman'**

Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309

Received December *17, 19936*

Regioselective reactivity, molecular cleft selectivity, and conformational properties have been examined in the skeletally stabilized triphosphazanes $C_6H_4N_2[P(Net_2)_2]_2PNEt_2$ (3), $C_6H_4N_2[P(S)(Net_2)_2]_2PNEt_2$ (4), $C_6H_4N_2$ - $[P(S)(NEt_2)_2]_2PCl$ (5), and $C_6H_4N_2[P(S)(NEt_2)_2]_2P(S)NEt_2$ (9) and in a series of new derivatives. 3 is oxidized/ coordinated regioselectively by O_3 , Se, PhN₃, and BH₃ to $C_6H_4N_2[P(O)(NEt_2)_2]_2PNEt_2$ (10) and $C_6H_4N_2[P(O)-1]_2PNEt_2$ $(NEt_2)_2P(O)NEt_2$ (11), $C_6H_4N_2[P(Se)(NEt_2)_2]_2PNEt_2$ (12), $C_6H_4N_2[P(NPh)(NEt_2)_2]_2PNEt_2$ (13), and C₆H₄N₂[P(BH₃)(NEt₂)₂]₂PNEt₂(14), respectively. 4 reacts selectively with HBF₄, CF₃CO₂H, and H₃PO₄ to form the endo-phosphorus-substituted $C_6H_4N_2[P(S)(NEt_2)_2]_2PF(18)$, $C_6H_4N_2[P(S)(NEt_2)_2]_2POC(O)CF_3(19)$, and **C6H4N2[P(S)(NEt2)2]2POP(0)(OH)2** (20). Quantitative Me1 quaternization or BH3 coordination of 4 yields ${C_6H_4N_2[P(S)(NEt_2)_2]_2P(CH_3)NEt_2}$ [[](16) or $C_6H_4N_2[P(S)(NEt_2)_2]_2P(BH_3)NEt_2$ (15). **5** reacts selectively with alcohols MeOH, EtOH, and i-PrOH (but is inert toward t-BuOH) to form $C_6H_4N_2[P(S)(NEt_2)_2]_2POR$ [R = Me (21), Et (22), i-Pr (23)] and with BH₃ to form $C_6H_4N_2[P(S)(NEt_2)_2]_2PH$ (25) and its adduct $C_6H_4N_2[P(S)(NEt_2)_2]_2-H_1$ PH(BH₃) (24). New triphosphazanes 10-16 and 18-25 are characterized by spectral data. Structures of 9, 12, and 16 are determined by X-ray crystallography: 9, orthorhombic, $Aba2$, $a = 23.111(4)$ Å, $b = 21.324(5)$ Å, $c =$ 14.609(3) **A,** *V=* 7200(2) AS, *Z* = **8,** R = 0.042, R, = 0.045; 12,orthorhombic, Pbca, *a* = 14.975(6) **A,** *b* = 18.894(7) \AA , $c = 24.524(8)$ \AA , $V = 6939(3)$ \AA ³, $Z = 8$, $R = 0.053$, $R_w = 0.058$; 16, orthorhombic, $C222$ ₁, $a = 10.885(4)$ \AA , $b = 20.78(2)$ Å, $c = 36.31(2)$ Å, $V = 8214(9)$ Å³, $Z = 8$, $R = 0.048$, $R_w = 0.050$. Variable-temperature ³¹P{¹H} NMR spectra of 3-5, 10, 11, 15, 16, and 20 and of the known $C_6H_4N_2[P(S)(NEt_2)_2]_2PNH_2$ (6), $C_6H_4N_2[P(S)-1]_2PCH_2$ $(NEt_2)_2$ ₁PN₃ (7), and $C_6H_4N_2[P(S)(NEt_2)_2]_2P(O)H$ (8) show that rotation around skeletal exo P-N bonds is unrestricted to below -90 °C; only 9 and 11 freeze to unsymmetrical conformations at low temperatures. Rotation of the endo $(CH_3CH_2)_2N$ - group in the molecular cleft of 3 is unrestricted to -90 \degree C; in 16 the group freezes to an unsymmetrical conformation below -40 °C. Potential impacts of the observed reaction selectivity and conformational properties on oligomeric/polymeric phosphazane structure and reactivity are discussed.

Introduction

Skeletally stabilized phosphazane oligomers and polymers containing alternating skeletal phosphorus and nitrogen atoms bridged at adjacent nitrogen atoms by $1,2-C_6H_4$ groups have been the subject of several recent studies. $2-7$ From 1,2- $(NH_2)_2C_6H_4/RPCl_2$ (R = Me, Ph) condensation⁴⁻⁶ or 1,2- $(NH_2)_2C_6H_4/RP(NEt_2)_2$ (R = Me, Et, Ph) transamination⁴⁻⁷ reactions, polymers (1), linear oligomers, and cyclic crown type cyclo dimers $(1; n = 2)^{4-6,8}$ and trimers $(1; n = 3)^8$ are formed. These new skeletally stabilized extended phosphazanes lead to basic questions about reactivity and molecular structure. Since

*Abstract published in *Advance ACS Abstracfs,* June **1, 1994.**

- **(1)** Present address: (a) Department of Chemistry, Shahid Chamran University, Ahwaz, Iran. (b) Callery Chemical Co., P.O. **Box 429,** Pittsburgh, PA **15230.** (c) Smithkline Beechum, P.O. Box **1539, L-950,**
- King of Prussia, PA 19406.

(2) (a) Barendt, J. M.; Haltiwanger, R. C.; Norman, A. D. J. Am. Chem.

Soc. 1986, 108, 3127. (b) Barendt, J. M.; Haltiwanger, R. C.; Norman,

A. D. Inorg. Chem. 1989, 28, 2334. (c) Bent, E. G.;
- **1986, 25, 4323. (b) Barendt, J. M.; Haltiwanger, R. C.; Squier, C. A.;** Norman, A. D. *Inorg. Chem.* **1991**, 30, 2342. **(4) Bent. E. G.; Barendt, J. M.; Haltiwanger, R. C.; Norman, A. D.** *Inorganic**(a)*
- and Organometallic Polymers; ACS Symposium Series 360; American
Chemical Society: Washington, DC, 1988; p 303.
(5) (a) Barendt, J. M.; Bent, E. G.; Haltiwanger, R. C.; Norman, A. D. J.
Am. Chem. Soc. 1989, 111, 6883. (b) B
-
- S. M.; Haltiwanger, R. C.; Norman, A. D. *Inorg. Chem.* **1991**, 30, 325. **(6) Norman, A. D.; Bent, E. G.; Haltiwanger, R. C.; Prout, T. R. Phosphorus** *Sulfur,* **1989,** *41,* **63.**
- **(7)** Bent, E. G.; Haltiwanger, R. C.;Norman, A. D. *Inorg. Chem.* **1990.29, 4310.**
- *(8)* Young, **S.** M.; Imiolczyk, T. M.; Haltiwanger, R. C.; Norman, A. D. Submitted for publication.

it is known that diphosphazane condensation reactions can occur with a high degree of stereoselectivity,⁹ it is possible that higher phosphazanes can also form stereoregularly. Second, although diphosphazane conformational properties have been examined,¹⁰⁻²⁰ little is known about conformations in higher phosphazanes.

- **(9)** (a) Hill. **T.** G.; Haltiwanger. R. C.; Norman, A. D. *Inorg. Chem.* **1985, 24,3499.** (b) Prout, **T.** R.; Imiolczyk, **T.** W.; Haltiwanger, R. C.; Hill, **T.** G.; Norman, A. D. *Inorg. Chem.* **1992,31, 215. (IO)** Keat, R. *Top. Curr. Chem.* **1982, 102, 89.**
-
- (11) Prout, T. R.; Imiolczyk, T. W.; Barthelemy, F.; Young, S. M.; Haltiwanger, R. C.; Norman, A. D. *Inorg. Chem.* 1994, 33, 1783. (12) Keat, R.; Manojlovic'-Muir, L.; Muir, K. W.; Rycroft, D. S. J. Chem. Soc., Dalton Tr
-
- **(13)** Cross, **R.** J.; Green, T. H. Keat, R. *J. Chem. SOC., Dalfon Trans.* **1976, 1424.**
- **(14)** Colquhoun, **I.** J.; McFarlane, W. J. *Chem. Soc., Dalton Trans.* **1977, 1674.**
- **(15)** Harvey, D. A.; Keat, R.; Keith, A. N.; Muir. K. W.; Rycroft, D. **S.**
- *Inorg. Chim. Acta* 1979, 34, L201.
(16) Rudolph, R. W.; Newmark, R. A. J. Am. Chem. Soc. 1970, 92, 1195.
(17) (a) Ebsworth, E. A. V.; Rankin, D. W. H.; Wright, J. G. J. Chem. Soc.,
Dalton Trans. 1977, 2348. (b) Ebsworth, Wright, J. G. J. *Chem.* **Soc.,** *Dalfon Trans.* **1979, 1065. (18)** HHgele, G.; Harris, R. K.; Wazeer, M. I. M.; Keat, R. J. *Chem.* **Soc.,**
- *Dalton Trans.* **1986, 1974.**

Skeletally Stabilized Triphosphazanes

Finally, there is insufficient information to assess the reactivity and/or accessibility of nonterminal skeletal phosphorus centers to P-X substituent replacement, Lewis acid coordination, or oxidation [e.g. $P(III)$ to $P(V)$]. The latter question is further complicated by the fact that these skeletally stabilized systems contain two types of phosphorus environments, bridge RP and phosphadiazole RP units, which could **possess** significantly different reactivities.

A triphosphazane unit, such as 2A or 2B, is a minimum-sized phosphazane that can yield representative information about extended skeletal phosphazane conformational properties around,

or reactivity at, the RP centers. From recent studies, one such triphosphazane is available, $C_6H_4N_2[P(NEt_2)_2]_2PNEt_2(3, X = Et_2N)$, a species which could model a central phosphadiazole type triphosphazane (2B).^{2b,21} In preliminary studies, 3 exhibited highly regioselective oxidation by S_8 at the exovs endo phosphorus atoms.³ Further, the disulfide $C_6H_4N_2[P(S)(NEt_2)_2]_2PNEt_2$ **(4)** and chloro-substituted derivative $C_6H_4N_2[P(S)(NEt_2)_2]_2PCl(5)$ showed restricted reactivity at the endo phosphorus, which was attributed to the existence of a protective molecular cleft at the central (endo) phosphorus site. We have now extended our studies of triphosphazanes in this series; the results are described below.

Experimental Section

Apparatus and Materials. Phosphorus-31, ¹¹B, and ¹⁹F NMR spectra were obtained on a Varian Gemini or a VXR300S spectrometer at 121.4, 96.2, and 292.2 Hz, respectively. ³¹P NMR spectra were also obtained with JEOL FX-90Q and Bruker WM-250 spectrometers at 36.5 and 101.2 MHz. ¹H NMR spectra were obtained on JEOL FX-90Q (90 MHz) and Varian Gemini-300 or VXR300S (300 MHz) NMR spectrometers. ^{31}P , ^{1}H , ^{11}B , and ^{19}F chemical shifts downfield from 85% H_3PO_4 (external), Me₄Si (internal), BF_3OEt_2 (external), and CF_3CO_2H (external), respectively, are reported as positive **(+6).** IR spectra (4000- 400 cm^{-1}) were obtained using a Beckman 4250 or an IBM IR/32 Type 9132 spectrometer. Mass spectra were obtained at 70 eV with a Varian MAT-CH5 or a VG Analytical 7070 EQ-HF spectrometer. Mass spectral data refer to the major peak of the respective envelope. Chemical ionization (CI⁺ and CI⁻) was achieved using isobutane as the ionizing gas. Exact mass analyses were referenced to perfluorokerosene. Ozonolyses were carried out in a Welsbach Ozonator Model T-408 operating at 90 V. X-ray diffraction data were collected on a Nicolet P3/F automated diffractometer equipped with a graphite monochromator and low-temperature attachment. All manipulations were carried out using standard vacuum-line, glovebag, or Schlenk techniques under dry N_2 .22

Flash chromatography was carried out as described by Still et al.²³ A 650- or 450-mL column was packed **(1** *5* cm) with silica gel 60 (230-400 mesh). Compounds were eluted with the necessary solvent mixture under N2 pressure at *5* cm/min.

Elemental analyses were performed by Huffman Laboratories Inc., Golden, CO, and Desert Analytics, Tuscon, AZ.

 $1,2-(NH₂)₂C₆H₄$ (Aldrich) was recrystallized from toluene and sublimed. $CF₃CO₂H$ (Aldrich) was stored over 13-Å molecular sieves. CH3I wasdistilled from CaHz. Toluene (over Na/benzophenoneor CaHz) and CH_2Cl_2 (CaH₂) were distilled before use. H_3PO_4 was dried with

- Shriver, D. **F.;** Drezdzon, M. A. *The* Manipulotion *of Air-Sensitive Compounds,* 2nd ed.; McGraw Hill: New York, **1986.**
- (23) Still, W. C.; Kahn, **M.;** Mitra, A. *J. Org. Chem.* **1978.43, 2923.**

P₄O₁₀. Silica gel (EM Science), KBr (Baker, oven dried), Se (laboratory supply), HBF₄ (85% in Et₂O complex, Aldrich), BH₃·THF (1.0 M in THF, Aldrich), petroleum ether, ethyl acetate, and deuterated solvents were used as received. PhIO (Aldrich) and Me₃NO (Aldrich) were sublimed before use. B_2H_6 ,²⁴ PhN₃,²⁵ C₆H₄N₂[P(NEt₂)₂]₂PNEt₂ (3),^{2b} $C_6H_4N_2[P(S)(NEt_2)_2]_2PNEt_2$ (4),^{2b} $C_6H_4N_2[P(S)(NEt_2)_2]_2PCI$ (5),^{2b} $C_6H_4N_2[P(S)(NEt_2)_2]_2PNH_2$ (6),^{2b} $C_6H_4N_2[P(S)(NEt_2)_2]_2PN_3$ (7),^{2b} $C_6H_4N_2[P(S)(NEt_2)_2]_2P(O)H (8),^{2b}$ and $C_6H_4N_2[P(S)Ph_2]_2P(S)NEt_2$ **(9)zb** were prepared as described previously.

Reactions of C₆H₄N₂P(NEt₂)₂bPNEt₂(3). (A) With Ozone. C₆H₄N₂- $[P(0)(NEt_2)_2]$ **pPNEt₂** (10) and $C_6H_4N_2[P(0)(NEt_2)_2]$ **pP**(O)NEt₂ (11). To $C_6H_4N_2[P(NEt_2)_2]_2PNEt_2$ (3) (20 mmol) in 120 mL of CH_2Cl_2 in a Schlenk tube at 10-12 °C was added O₃ as O₃/O₂ at 8 psi. Samples were taken every 3 min for ³¹P NMR analysis. After 42 min, resonances were present at δ 13.7 (d, area 2, $^{2}J_{\text{PNP}} = 51.3 \text{ Hz}$) and 97.9 (t, area 1) and at δ 11.3 (d, area 2, $^{2}J_{\text{PNP}} = 16.5 \text{ Hz}$) and 19.2 (t, area 1) due to **10** and **11**, respectively $(10:11 = 2:1)$. Attempts to separate the mixture by crystallization or column chromatography failed. No distinguishable change in the mixture composition was observed after 2 weeks at 25 $^{\circ}$ C. Conditions under which **10** formed without **11** were not found.

Addition of O_3 to 3 in CH₂Cl₂ at 10-12 °C (as above) for 100 min yielded 11 quantitatively. 11 crystallized from CH₂Cl₂ (mp 109-111 OC, yield 97%). MS: M+ *m/e* 605. IR (KBr, cm-I): 2978 **(s),** 2935 **(s),** 2875 **(s),** 1680 (w), 1593 **(s),** 1488 (vs), 1465 (m), 1382 (m), 1360 (w), 1332 (w), 1302 (w), 1255 (w), 1232 **(s),** 1211 **(s),** 1192 **(s),** 1170 (w), 1120 (vs), 1100 (m), 1065 (m), 1035 (w), 1008 (w), 962 (vs), 942- (w), 918 (m), 908 (vs), 794 (vs), 755 (vs), 735 (m), 716 (vs), 694 (vs), 668 **(s),** 562 (w), 532 (m), 502 (m), 460 (m). Mol wt: calcd for C%H&Jfi,P3,605.357 **94;found(exactmassMS),605.357** 88. Because samples were routinely contaminated with traces of H_2O which we were unable to remove completely, satisfactory chemical elemental analyses were not obtained. ³¹P[¹H] NMR (toluene-d₈, 27 °C): AX₂ pattern,²⁶ δ 10.5 [d, area 2, ²J_{PP} = 14.7 Hz; P(1), P(3)], 19.0 [t, area 1, P(2)]. $31P{^1H}$ NMR (EtOH), 27 °C): δ 11.0 (d, area 2, $J = 17.1$ Hz), 18.6 (t, area 1). ¹H NMR (toluene-d₈): ∂ 7.23-6.92 (m, area 4; C₆H₄), 3.26-2.84 (m, area 20; CH₂), 1.00 (m, area 30; CH₃).

11 reacted slowly with H₂O, during 6 h, to form a mixture of sofar-uncharacterized products.

(B) With **Otber** [O] **Oxidants. 3** with excess PhIO or Me3NO in refluxing benzene for 20 h showed no reaction.

(C) With Selenium. C₆H₄N₂[P(Se)(NEt₂)₂]₂PNEt₂(12). 3and excess Se in toluene were refluxed for 12 h. ³¹P NMR spectral analysis showed only 12. Recrystallization from toluene yielded 12 (mp 128-129 °C, 68.4 Hz; P(l), P(3)], 63.0 [t, area 1; P(l)]; *Jpsc* = 391 Hz. 3IP(lH) VT NMR (toluene-d₈): ²J_{PNP}, Hz (temp, °C): 68.4 (25), 68.2 (00), 68.1 (-30), 68.3 (-60), 68.0 (-90). ¹H NMR (C₆D₆): δ7.54 (m, area 2; C₆H₄ ortho), 6.86 (m, area 2; C₆H₄ ortho), 3.40 (m, area 4; exo CH₂CH₃), 3.13 (m, area 12; exo CH₂CH₃), 2.82 (m, area 4; endo CH₂CH₃), 0.9-1.2 (m, area 30; CH3). IR (KBr, cm-I): 2924 (m), 1586 **(s),** 1482 (vs), 1377 (vs), 1331 (w), 1293 (w), 1250(vs), 1200(s), 1165 (vs), 1115 (w), 1061 (vs), 945 (vs), 883 (vs), 794 (vs), 741 **(s),** 691 (w), 579 (m), 509 (m), 475 (m), 428 (w). MS: M⁺ m/e 717. Anal. Calcd for C₂₆H₅₄N₇P₃Se₂: C, 43.64; H, 7.55; N, 13.69. Found: C, 44.64; H, 7.85; N, 13.04. yield >90%). ³¹P{¹H} NMR (C₆H₆, 27 °C): δ 99.7 [d, area 2, ²J_{PNP} =

(D) With PhN₃. C₆H₄N₂^{[P}(NPh)(NEt₂)₂]₂PNEt₂ (13). 3 and PhN₃ $[(2-3):1]$ mole ratio] in toluene were combined at 25 °C; reaction occurred immediately. 31PNMRspectra showed **13** withonly tracesof unidentified materials. Removal of toluene in vacuo yielded 13 as an oil (>90%), which we were unable to purify completely by crystallization or column chromatography. ³¹P(¹H) NMR (C₆H₆): δ 99.1 [t, area 1, ²J_{PNP} = 47.6 Hz; P(2)], 32.9 [d, area 2; P(1), P(3)].

(E) With BH₃ THF. $C_6H_4N_2P(BH_3)(NEt_2)_2pPNEt_2(14)$. BH₃·THF (excess) was added under N₂ to a solution of 3 in THF at room temperature, and the mixture was stirred overnight. The ³¹P NMR spectrum showed only 14. The reaction solution was concentrated in vacuo. 14precipitated upon cooling to 0° C and was recrystallized from toluene (mp 152-154 (m, area 2; C₆H₄ meta), 3.40 (m, area 20; CH₂CH₃), 1.30 (br m, area 6; PBH₃), 1.05 (t, area 12, ${}^{3}J_{HH}$ = 7.08 Hz; exo CH₂CH₃), 0.93 (t, area 6, ${}^{3}J_{\text{HH}}$ = 7.08 Hz; endo CH₂CH₃), 0.91 (t, area 12, ${}^{3}J_{\text{HH}}$ = 7.08 Hz; ^oC, yield 92%). ¹H NMR (C₆D₆): δ 7.57 (m, area 2; C₆H₄ ortho), 6.84

-
- **(24)** Norman. A. D.; Jolly, W. L. *Inorg. Synthesis* **1968,** *11,* **15. (25)** Lindsay, **R. 0.;** Allen, C. F. H. *Organic Syntheses;* Wiley: New York, **1955;** Collect. **Vol:III,** p **710.**
- **(26)** Abraham, *R.* J. *The AnolysisofHigh ResolutionNMRSpectro;* Elsevier Publishing Co.: New York, **1971.**

Bulloch, G.; Keat, R.; Rycroft, D. **S.;** Thompson, D. G. *Org. Magn. Reson.* **1979,** *12,* **708.**

 (20) Chen, H.-J.; Barcndt, J. M.; Haltiwanger, **R.** C.; Hill, T. G.; Norman, **A.** D. *Phosphorus Suljur* **1986,** *26,* **155.**

Moskva, **V. V.;** Kuliev, A. **K.;** Akhmedzade. D. A.; Pudovik, **M.** A.; Sakhnovskaya. J. *Gen. Chem. USSR (Engl. Tronsl.)* **198\$,55,834.**

exo CH₂CH₃). ³¹P{¹H} NMR (toluene- d_8 , 27 °C): δ 100.3 [t, area 1, $^{2}J_{\text{PNP}} = 59.3 \text{ Hz}; P(\text{NE}t_2)$, 94.0 [br m, area 2; $P(\text{BH}_3)$]. ³¹P{¹H} VT NMR (toluene-d₈): 70 °C, δ 101.3 [t, area 1, ²J_{PNP} = 61.6 Hz; P(1), P(3)], 95.4 [d of q, area 2, $^{1}J_{PB} = 84.9$ Hz; P(2)]; -90 °C, δ 98.4 (t, area $1, \frac{2J_{\text{PNP}}}{2} = 55.1 \text{ Hz}$, 90.0 (br d, area 2). $\frac{2J_{\text{PNP}}}{2}$, Hz (temp, °C): 59.7 (loo), 60.7 (90), 60.3 (80), 61.0 (70), 60.1 (60), 60.3 **(50),** 60.1 (40), (-80), 55.1 (-90). ¹¹B[¹H] NMR (toluene-d₈): δ -33.4 (d, ¹J_{BP} = 87.9 Hz); from ¹H-coupled spectrum, d of q, $^{1}J_{BH} = 122$ Hz. Anal. Calcd for $C_{26}H_{60}B_2N_7P_3$: C, 53.33; H, 10.26; N, 16.75. Found: C, 53.52; H, 10.48; N, 16.37. MS (CI+), M+ *m/e* (% re1 int): 585 *(5).* IR (KBr, cm-I): 3426 (w), 3060 (w), 2974 (vs), 2934 **(s),** 2870 **(s),** 2390 (vs), 2281 (w), 1586 (w), 1483 (vs), 1380(vs), 1349 (m), 1332 **(s),** 1291 (m), 1251 (vs), 1202 (vs), 1178 (vs), 11 19 (m), 1076 **(s),** 1028 (vs), 986 (m), 946 (vs), 890 **(s),** 866 **(s),** 842 (m), 797 **(s),** 738 (vs), 691 **(s),** 674 (m), 603 (w), **505** (m), 481 (m). 59.9 (30), 59.9 (25), 59.5 (0), 59.2 (-20), 58.2 **(-4O),** 57.6 **(do),** 55.9

 R eactions of $C_6H_4N_2[P(S)(NEt_2)_2]_2PNEt_2$ (4). (A) With B_2H_6 and BH₃·THF. C₆H₄N₂^D(S)(NEt₂)₂*bP*(BH₃)NEt₂(15). B₂H₆(0.13 mmol) was condensed onto 4 (0.065 mmol) in toluene- d_8 , and the mixture was warmed to 25 °C. The ³¹P NMR spectrum exhibited resonances from 15 and uncoordinated 4 (mole ratio $15.4 = 1.3:1$). The ¹¹B{¹H} NMR spectrum showed singlet resonances from 15 and unreacted B_2H_6 . ³¹P- 1H NMR (toluene-d₈): δ 108 (br s, area 1; PBH₃), 66.4 (d, area 2, J_{PNP} = 34.0 Hz; *P*=S). ¹¹B{¹H} NMR (toluene- d_8): δ -33.8 (br s).

Measured quantities of BH_3 THF were added under N_2 to a solution of 4 in toluene- d_8 or THF in mole ratios of $(0.5-10)$:1. Solutions were allowed to reach equilibrium at 20 $^{\circ}$ C (NMR probe temperature), and the 15:4 ratios were determined by integration of the ³¹P NMR spectra. Typical reaction conditions are as follows. $[BH_3\textrm{-}THF]$, [4], [THF] initial molar concentrations (solvent), 15:4 equilibrium ratio: (1) 0.121, 0.235, 12.3 (THF), 0.14:l; (2) 0.189, 0.161, 12.3 (THF), 0.22:l; (3) 0.343, 0.0850, 4.23 (THF), 1.l:l; (4) 0.857, 0.142, 12.3 (THF), 0.71:l; *(5)* 0.814, 0.0821, 12.3 (toluene), 0.58:1; (6) 0.471, 0.0456, 5.82 (toluene), 1.34:1. The ¹¹B{¹H} NMR spectrum showed singlet resonances from unreacted BH_3 ·THF and 15. Removal of solvent and BH_3 ·THF in vacuo resulted in complete conversion of 15 to 4.

(B) With CH₃I. ${C_6H_4N_2P(S)(NEt_2)_2}P(CH_3)NEt_2}I$ (16). CH₃I (0.2 mL, 3.2 mmol) was syringed into a solution of 3 (0.974 g, 1.6 mmol) in CH₂Cl₂ at 25 °C. Reaction occurred slowly; in 18 h the ³¹P{¹H} NMR spectrum showed AB_2 ¹⁹ pattern resonances assigned to 16 along with those of $3 (16:3 = 2:1)$. Reaction was complete in 36 h. The solution contained mainly 16 along with minor amounts of 3 and $C_6H_4N_2[P(S) (NEt_2)_2|_2P(O)H(8)$ $(< 5\%)$. Removal of solvent in vacuo and separation of 16 by flash column chromatography (95% CH₂Cl₂/MeOH), followed by recrystallization from toluene yielded pure 16 (mp 127-1 30 "C, yield ≥90%). ³¹P{¹H} NMR (CD₂Cl₂, 27 °C): δ 65.7 (d, area 2, ²J_{PNP} = 35.5 Hz; *P*=S), 62.1 (t, area 1; *PCH*₃). ³¹P(¹H} VT NMR (CD₂Cl₂)²J_{PNP}, Hz (temp, °C): 35.5 (25), 35.9 (0), 36.2 (-20), 36.1 (-40), 36.7 (-60), 37.0 (-80), 37.2 (-90). IH NMR (CDzCI2): **6** 7.8 (m, area 2; C6H4 ortho), 7.2 (m, area 2; C_6H_4 meta), 3.5 (m, area 4; endo CH_2CH_3), 3.2 $(m, area 16; exo CH₂CH₃), 3.18 (d, area 3, ²J_{HP} = 15.6 Hz; PCH₃), 1.36$ $(t, \text{area } 6, \,^{3}J_{\text{HH}} = 7.08; \text{endo } CH_{2}CH_{3}), 1.26$ (t, area 12, $^{3}J_{\text{HH}} = 7.08;$ exo CH₂CH₃), 1.01 (t, area 12, ${}^{3}J_{\text{HH}}$ = 7.08; exo CH₂CH₃). MS (FAB): (M - I)+ *m/e* 636. IR (KBr, cm-I): 3421 (w), 2973 **(s),** 2933 **(s),** ²⁸⁷⁴ **(s),** 1585 (w), 1474 (vs), 1382 **(s),** 1341 (m), 1319 (m), 1294 (m), 1227 (s), 1202 (vs), 1164 (vs), 1114 (s), 1060 (m), 1027 (s), 990 (m), 929 (vs), 896 **(s),** 805 (m), 763 (m), 723 (vs), 697 (m), 664 (m), 643 (w), 597 (w), 514 (m), 466 (m). Anal. Calcd for $C_{27}H_{57}N_7P_3S_2I$: C, 42.46; H, 7.47; N, 12.84. Found: C, 44.51; H, 7.64; N, 11.77.

In sealed NMR tube reactions (CH₃I: $4 = 3.5:1$) spectral evidence for $C_6H_4N_2[P(S)(NEt_2)_2]_2PI$ (17) was seen (ratio 16:17 = 2:1). ³¹P{¹H} NMR (CD₂Cl₂): δ 146.4 (t, area 1, ²J_{PNP} = 64.5 Hz; PI), 66.9 (d, area 2; $P=$ S). Addition of $HNEt₂$ to the solution containing 16 and 17 resulted in complete conversion of 17 to 4.

(C) With **Se.** 4 showed no reaction with Se (in toluene solution) or KSeCN (in CH₃CN solution) at temperatures from 25 to 110 $^{\circ}$ C.

 μ L, 0.08 mmol) was syringed into a solution of 3 (0.049 g, 0.08 mmol) in THF at -80 "C. Reaction occurred immediately. Removal of THF in vacuo yielded an oil, which we were unable to purify by crystallization or column chromatography. $^{31}P{^1H}$ NMR (THF- d_8): δ 127.8 (d of t, area 1, ${}^{1}J_{PF} = 1184 \text{ Hz}$, ${}^{2}J_{PNP} = 54.7 \text{ Hz}$; *PF*), 66.4 (d, area 2; *P*=S). **I9F** NMR (THF-ds): 6 23.4 (d, *lJ~p* = 1184 Hz). Mol wt: calcd for C₂₂H₄₄FN₆P₃S₂, 568.2266; found (EI⁺, exact mass), *m/e* 568.2278. MS (EI⁺), M^{+} m/e (% rel int): 568 (12). The ¹¹B NMR spectrum showed a broad resonance at δ 0.5 attributable to Et₂NH.BF₃. **(D) With HBF₄.** C₆H₄N₂^IP(S)(NEt₂)₂¹₂PF (18). HBF₄ (85%) (13.0

(E) With CF₃CO₂H. C₆H₄N₂[P(S)(NEt₂)₂]₂PO₂CCF₃ (19). CF₃- $CO₂H$ (0.09 mL, 1.2 mmol) was syringed into 4 (0.463 g, 0.75 mmol) in CH_2Cl_2 at 25 °C. The ³¹P{¹H} NMR spectrum exhibited resonances from 18 and minor resonances from **8** (<15% spectral area). Removal of CH₂Cl₂ in vacuo yielded an uncrystallizable oil. Mol wt: calcd for $C_{24}H_{44}F_3N_6O_2P_3S_2$, 662.2132; found (EI⁺, exact mass), 662.2161. MS (EI⁺), M⁺ m/e (% rel int): 662 (3). ³¹P{¹H} NMR (C₆D₆): δ 119.7 (t, area 1, $^{2}J_{PP}$ = 70.7 Hz; PCO_2CF_3), 66.6 (d, area 2; P=S). ¹⁹F NMR $(C_6D_6): \delta 2.1$ (s).

(F) WithHSOb **C34NdP(S)(NEtz)zhPOP(O)(OH)z** (20). A twophase mixture of 4 (0.308 g, 0.50 mmol) and excess H_3PO_4 (>98% H_3 -PO₄) in CH₂Cl₂ at 25 °C was stirred for 0.5 h. The CH₂Cl₂ solution was decanted from any unreacted acid. The ³¹P NMR spectrum showed 20 and **8**. Removal of CH₂Cl₂ in vacuo yielded **20** as an oil (>85%), which we were unable to purify by crystallization or column chromatography. $31P{^1H}$ NMR (CD₂Cl₂, 27 °C): δ 113.2 (t of d, area 1, $^2J_{\text{PNP}} = 67.5$ Hz, $^{2}J_{POP}$ = 20.6 Hz; $\overline{POP(O)(OH)_2}$, 66.0 (d, area 2; $\overline{P=S}$), -7.1 (d, area 1; $POP(O)(OH)_2$. ³¹P(¹H) VT NMR (CD₂Cl₂) ²J_{PNP}, ²J_{POP}, Hz (temp, "C): 67.5,20.6 (25); 67.1, 18.3 **(0);** 66.3, 16.6 (-20); 65.2, 12.6 (-40) ; 63.3, br (-60) . ¹H NMR (CD₂Cl₂): δ 11.18 (br s, area 2; P(OH)₂), 7.42 (m, area 2; C6H4 ortho), 7.05 (m, area *2;* C6H4 meta), 3.23 (m, area 16; CH₂CH₃), 1.18 (t, area 12; CH₂CH₃), 1.07 (t, area 12; CH₂CH₃). MS (EI+), M+ *m/e* (96 re1 int): 646 (3).

 $(NEt_2)_2E\nOR [R = Me (21), Et (22), i-Pr (23)].$ 4 was combined with excess ROH ($R = Me$, Et, i-Pr, t-Bu) in CH_2Cl_2 at 25 °C. After 10 min, excess ROH and solvent were removed in vacuo, leaving products (21- 23) as oils. 21 was isolated and fully characterized. $31P\{^1H\}NMR$ (CH₂-Cl₂): δ 108.9 (t, area 1, ²J_{PNP} = 52.9 Hz; POCH₃), 66.8 (d, area 2; *P*=S). ¹H NMR (C₆D₆): δ 8.04 (m, area 2; C₆H₄ ortho), 6.94 (m, area 2; C₆H₄ meta), 3.28 (d, area 3, $^{3}J_{HP}$ = 7.8 Hz; POCH₃), 3.20 (m, area 16; CH₂CH₃), 1.07 (t, area 12, ³J_{HH} = 7.08 Hz; CH₂CH₃), 0.95 (t, area 12, ${}^{3}J_{\text{HH}} = 7.08 \text{ Hz}$; CH₂CH₃). Mol wt: calcd for C₂₃H₄₇N₆OP₃S₂, 580.2466; found (EI⁺, exact mass), 580.2445. MS (EI⁺), M⁺ m/e (% rel int): 580 (8). 22 and 23 were characterized by $31P{1H}$ NMR as mixtures (with 8): 22, δ 108.2 (t, area 1, $^{2}J_{PP} = 53.3$ Hz; POCH₂CH₃), mixtures (with 8): 22, δ 108.2 (t, area 1, ²J_{PP} = 53.3 Hz; POCH₂CH₃),
68.6 (d, area 2; *P*=S): 23, δ 109.6 (t, area 1, ²J_{PNP} = 59.4 Hz; POCH-
(CH₃)₂), 68.6 (d, area 2; *P*=S).
+ B₁₁OH and **6** did n Reactions of C₆H₄N₂^{[P(NEt₂)₂]₂PCl(5) with ROH. C₆H₄N₂^{[P(S)-}}

t-BuOH and **5** did not react.

Variable-Temperature *NMR* **Data. (A)** 31P **NMR** 3-8.9, and 11. **3-8** exhibited characteristic 31P{lH) NMR AX2 triplct-doublet spectral patterns over the temperature ranges studied. 3 (toluene- d_8 , 24 °C): δ 106.5 [d, area 2; P(1), P(3)], 100.5 [t, area 1; P(2)]. ²J_{PNP}, Hz (temp, "C): 52.5 (104), 51.8 (84),49.8 (54), 48.1 (30), 43.5 (27), 38.3 **(-50),** 34.4 (-70), 29.6 (-90). 4 (toluene-d₈, 27 °C): δ 65.1 [d, area 2; P(1), P(3)], 98.3 [t, area 1; P(2)]. ²J_{PNP}, Hz (temp, °C): 64.8 (105), 65.2 **5** (toluene-d₈, 27 °C): δ 64.5 [d, area 2, ²J_{PNP} = 66.7 Hz; P(1), P(3)], 143.9 [t, area 1; P(2)]. $2J_{\text{PNP}}$, Hz (temp, °C): 64.1 (105), 64.5 (90), (toluene-d₈, 27 °C): δ 65.1 [d, area 2; P(1), P(3)], 94.1 [t, area 1; P(2)]. zJ~~, Hz (temp, "C): 58.7 (loo), 58.5 (40), 58.0 (-30), 57.0 **(do), 55.0** (-80), 53.5 (-90). **7** (toluene-do, 27 "C): 6 65.8 [d, area *2;* P(l), P(3)], 121.4 [t, area 1; P(2)]. ²J_{PNP}, Hz (temp, °C): 70.7 (27), 71.5 (0), 72.5 (-60), 73.0 (-90). **8** (toluene-d₈, -27 °C): δ 111.9 [d, area 2; P(1), P(3)], 10.2 [t, area 1; P(1)]. $2J_{\text{PNP}}$, Hz (temp, °C): 13.0 (100), 12.0 (40), 11.5 (0), 10.0 (-30), 8.5 **(-6O), 5.5** (-90). **9** (toluene-d8, 121.2 MHz, $+27$ to -70 °C), resolved AX_2 pattern¹⁹ (Figure 5A): δ 68.3 (t, area 1), 64.4 (d, area 2). ²J_{PNP}, Hz (temp, 0 °C): 20.6 (20), 21.0 (0), 22.5 (-70). The spectrum broadened below -70 °C; $T_c = -75$ °C. By -1 10 "C the spectrumexhibited resonances from three conformers, **9A-C** (Figure 5B). 9A (86% total spectral area), AMX pattern:¹⁹ δ 68.5 (d of d, area 1, $^{2}J_{\text{PNP}} = 8.8 \text{ Hz}$, $^{2}J_{\text{PNP}} = 43.5 \text{ Hz}$), 63.0 (d, area 1), 62.4 (d, area 1). 9B (13% total spectral area), AX2 pattern: 6 65.5 (br **t,** area $1, \frac{2J_{\text{PNP}}}{2} \approx 7 \text{ Hz}$, 63.8 (br d, area 2). **9C** (<1% total spectral area), AX₂ pattern: *δ* 70.5 (t, area 1, ²J_{PNP} ≤ 43 Hz), 61.6 (d, area 2). 11 (toluene-NMR (EtOH): at 27 °C, AX_2 pattern [²J_{PNP}, Hz (temp, °C): 17.1 Hz (0), 17.6 (-30), 17.9 (-50), 18.0 (-60)]; at -70 to -90 °C, broad intermediate patterns, $T_c = -85 \text{ °C}$; at -110 °C , incompletely resolved ABX pattern, **6** 18.6 (br m, area l), 12.6 (br m, area l), 10.0 (br m, area **1).** (90), 64.5 (60), 64.3 (30), 64.1 (0), 64.1 (-30), 64.2 (-60), 64.3 (-94). 65.7 (60), 66.1 (30), 66.5 (O), 67.5 (-30), 68.2 **(do),** 68.4 (-90). 6 21.4 (-20), 21.8 **(40),** 21.8 **(-50),** 21.8 *(-53,* 22.2 **(-6O),** 22.2 *(-65),* d_8 , +100 to -85 °C): AX₂ pattern. ²J_{PNP}(27 °C) = 14.7 Hz. ³¹P{¹H}

(B) ${}^{1}H$ **NMR:** 4, 9, and 16. 4 (CD_2Cl_2) : spectrum temperature independent to -60 °C except for endo CH_2CH_3 resonances; endo CH₂ multiplet (∂ 2.86) observed, endo CH₃ resonances not resolved from other

Table **1.** Crystal Data and Details of the Structure Determinations for 9, **12,** and **16**

		12	16	$C_6H_4[P(Se)(NEt_2)_2]_2PNEt_2(12)$				
formula	$C_{26}H_{54}N_7P_3S_3$	$C_{26}H_{54}N_7P_3Se_2$	$C_{27}H_{57}N_{7}P_{3}S_{2}I$	atom	x	ν	z	$U_{\mathbf{N}}^{\;\;\;b}$
fw	653.86	715.6	763.7	Se(1)	114(1)	934(1)	2166(1)	$54(1)$ *
space group	Aba2	Pbca	$C222_1$	Se(2)	$-1719(1)$	1149(1)	5326(1)	72(1)*
crystal system	orthorhombic	orthorhombic	orthorhombic	P (1)	$-1220(2)$	931(1)	2430(1)	$41(1)$ [*]
a, A	23.111(4)	14.975(6)	10.885(4)	P(2)	$-1568(2)$	488(1)	3589(1)	$36(1)$ *
b, Å	21.324(5)	18.894(7)	20.78(2)	P(3)	$-2438(2)$	1064(2)	4596(1)	$47(1)$ [*]
c, A	14.609(3)	24.524(8)	36.31(2)	N(1)	$-1348(4)$	1138(4)	3088(3)	$37(3)$ *
V, λ^3	7200(2)	6939(3)	8214(9)	N(2)	$-1821(4)$	1188(4)	4034(3)	$40(3)$ *
z				N(3)	$-1828(5)$	1538(4)	2126(3)	$54(3)$ *
d_{obs} , g/cm^3	1.24	1.370	1.315	N(4)	$-1675(4)$	137(4)	2394(3)	$41(3)$ [*]
μ , cm ⁻¹	3.60	2.083	1.012	N(5)	$-591(5)$	201(4)	3795(4)	$61(4)$ [*]
λ (Mo Ka), A	0.71073	0.710 69	0.71073	N(6)	$-2875(5)$	269(4)	4522(3)	$49(3)$ [*]
T.K	295-297	193	295-297	N(7)	$-3218(5)$	1668(4)	4533(3)	$58(3)$ [*]
programs	SHELXTL	SHELXTL PLUS	SHELXTL	C(1)	$-1174(6)$	1812(5)	3322(5)	$44(4)$ [*]
R, R_w	0.042, 0.045	0.053, 0.058	0.048, 0.05	C(2)	$-1431(6)$	1842(6)	3860(5)	$47(4)$ [*]
goodness of fit	1.28	l.53	1.23	C(3)	$-1300(7)$	2439(5)	4179(4)	52(4)

Table 2. Atomic Coordinates^a (×10⁴) and Equivalent Isotropic Displacement Parameters **(A2** x 103) for $C_6H_4N_2[P(S)(NEt_2)_2]_2P(S)NEt_2(9)$

 a Atoms have occupancies of 1.0 except as marked with $\#$ above: C(54), 0.50; C(54'), 0.50. \circ For atoms marked with \bullet , the equivalent isotropic U is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

CH₃ resonances; at -20 °C the CH₂ multiplet resonance broadens, at -80 °C two equal area 2 multiplets (δ 3.3 and δ 2.4) are seen; $T_c = -50$ °C (Figure 6). 9 (CD₂Cl₂): spectrum temperature independent to -90 °C except for general broadening. 16 (CD₂Cl₂): spectrum temperature independent to -60 °C except for endo CH_2CH_3 resonances; endo CH₃ triplet observed at δ 1.36 ($^3J_{HH}$ = 7.0 Hz); CH₂ resonances not resolved from other CH₂ resonances; at -40 °C endo CH₃ resonance becomes two area 3 triplets, δ 1.31 and 1.40 (${}^{3}J_{\text{HH}}$ = 6.7 Hz); T_c = -13 °C; below -60 °C, general spectral broadening.

Table 3. Atomic Coordinates^{a} (\times 10⁴) and Equivalent Isotropic Displacement Parameters **(A2 x** 103) for $C_6H_4[P(Se)(NEt_2)_2]_2PNEt_2$ (12)

atom	x	у	z	$U_{\rm eq}$ b
Se(1)	114(1)	934(1)	2166(1)	54(1)*
Se(2)	$-1719(1)$	1149(1)	5326(1)	72(1)*
P(1)	$-1220(2)$	931(1)	2430(1)	$41(1)$ [*]
P(2)	$-1568(2)$	488(1)	3589(1)	$36(1)$ *
P(3)	$-2438(2)$	1064(2)	4596(1)	$47(1)$ [*]
N(1)	$-1348(4)$	1138(4)	3088(3)	$37(3)$ *
N(2)	$-1821(4)$	1188(4)	4034(3)	$40(3)$ *
N(3)	$-1828(5)$	1538(4)	2126(3)	$54(3)$ *
N(4)	$-1675(4)$	137(4)	2394(3)	$41(3)$ *
N(5)	$-591(5)$	201(4)	3795(4)	$61(4)$ *
N(6)	$-2875(5)$	269(4)	4522(3)	49(3)*
N(7)	$-3218(5)$	1668(4)	4533(3)	$58(3)$ *
C(1)	$-1174(6)$	1812(5)	3322(5)	44(4)*
C(2)	$-1431(6)$	1842(6)	3860(5)	47(4)*
C(3)	$-1300(7)$	2439(5)	4179(4)	$52(4)$ *
C(4)	$-908(7)$	3012(6)	3923(6)	66(5)*
C(5)	$-645(7)$	2990(6)	3384(7)	79(6)*
C(6)	$-771(7)$	2393(6)	3074(5)	$58(5)^*$
C(31)	$-1741(8)$	1574(6)	1518(5)	82(4)
C(32)	-1250(8)	2206(7)	1354(5)	108(5)
C(33)	$-2678(8)$	1806(6)	2347(5)	87(4)
$C(34)$ #	$-2890(13)$	2530(10)	2278(9)	83(8)
C(34')#	$-3270(28)$	2193(25)	1981(19)	66(17)
C(41)	$-2657(6)$	82(5)	2455(4)	53(3)
C(42)	$-2983(7)$	$-613(5)$	2675(4)	60(3)
C(43)	$-1238(6)$	$-477(5)$	2130(4)	51(3)
C(44)	$-1554(7)$	$-617(6)$	1556(4)	68(3)
$C(51)$ #	294(19)	683(12)	3782(10)	74(8)
$C(52)$ #	473(20)	760(13)	4373(12)	95(11)
C(51')#	50(18)	566(12)	4154(10)	31(9)
C(52')#	796(23)	902(15)	3847(10)	52(11)
C(53)	$-440(6)$	$-557(5)$	3807(4)	45(3)
C(54)	240(6)	$-824(5)$	3402(4)	62(3)
C(61)	$-3569(6)$	146(5)	4096(4)	45(3)
C(62)	$-4515(6)$	123(5)	4300(4)	58(3)
C(63)	$-2461(7)$	$-404(6)$	4745(5)	75(3)
C(64)	$-2968(9)$	$-735(7)$	5160(6)	126(6)
C(71)	$-3602(7)$	1891(5)	4008(4)	65(3)
C(72)	$-3690(9)$	2671(6)	3948(5)	107(5)
C(73)	$-3860(8)$	1775(7)	5026(5)	95(4)
C(74)	$-3587(8)$	2420(7)	5318(5)	113(5)

*^a*Atoms have occupancies of 1.0 except as marked with # above: $C(34), 0.72; C(34'), 0.28; C(51), 0.58; C(52), 0.58; C(51'), 0.42; C(52'),$ 0.42. $\overset{.}{b}$ For atoms marked with $*$, the equivalent isotropic *U* is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

X-ray Analyses. (A) $C_6H_4N_2[P(S)(NEt_2)_2]_2P(S)NEt_2$ (9). Crystallographic data were collected at -80 °C, because analysis of data collected at 25 °C showed significant disorder in the ethyl groups. Data collection and structure solution details are summarized in Table 1 and listed in the supplementary tables. The structure was solved by direct methods and refmed by block-cascade least-squares calculations treating non-hydrogen atoms anisotropically. Hydrogen atoms were refined as fixed groups. Calculations were carried out using programs in the SHELXTL package. Metrical details are listed in the supplementary tables.

(B) C₆H₄N₂[P(Se)(NEt₂)₂]₂PNEt₂ (12). Crystallographic data were collected at -80 °C. Details of the data collection and structure solution are summarized in Table 1 and listed in the supplementary tables. The structure was solved by direct methods and refined by least-squares calculations. An empirical absorption correction was applied. All nonhydrogen atoms except the ethyl carbon atoms were treated anisotropically. The ethyl carbon atoms were treated isotropically, and the hydrogen atoms were included in idealized positions and refined riding on the atom to which they were attached. Calculations werecarried out using programs in the SHELXTL package. Metrical details are listed in the supplementary tables.

(C) (G&N~P(S)(NJZt~)&P(CH~)NEt2]1(16). Crystallographicdata were collected at room temperature (22-24 °C). Details of the data collection and structure solution are summarized in Table 1 and listed in the supplementary tables. The toluene solvent molecule was disordered and included in multiple positions. The structure was solved by direct methods and refined by least-squares calculations treating non-hydrogen atoms anisotropically. Hydrogen atoms were included in idealized

Table 4. Atomic Coordinates^{*a*} (\times 10⁴) and Equivalent Isotropic Displacement Parameters (\AA ² \times 10³) for **(C6H4N2[P(S)(NEt2)212P(CH3)NEt21I (16)**

atom	x	y	Z	$U_{\bf eq}{}^b$
$I(1)$ #	5971(1)	5000	5000	92(1)*
$I(2)$ #	0	4010(1)	2500	$112(1)$ *
P(1)	2065(3)	5398(1)	3731(1)	57(1)*
P(2)	2688(2)	3998(1)	3707(1)	42(1)*
P(3)	1910(3)	2624(1)	3748(1)	$52(1)$ *
S(1)	3721(3)	5491(1)	3552(1)	73(1)*
S(2)	3566(3)	2499(1)	3567(1)	$65(1)$ [*]
N(1)	1834(8)	4609(4)	3872(2)	43(3)*
N(2)	1778(7)	3421(3)	3885(2)	$46(3)$ [*]
N(3)	1727(11)	5803(4)	4103(2)	78(4)*
N(4)	1062(9)	5576(5)	3429(2)	64(4)*
N(5)	4043(7)	3998(4)	3873(2)	46(3)*
N(6)	1507(8)	2239(3)	4123(2)	$56(3)$ *
N(7)	848(9)	2468(4)	3446(2)	$62(3)^*$
C(1)	849(10)	4374(5)	4091(3)	50(4)*
C(2)	793(11)	3692(5)	4096(3)	51(4)*
C(3)	–70(12)	3403(6)	4305(3)	75(5)*
C(4)	–953(14)	3765(8)	4490(3)	96(6)*
C(5)	–909(14)	4417(7)	4482(3)	95(6)*
C(6)	–12(12)	4721(6)	4285(3)	76(5)*
C(21)	2676(9)	3985(5)	3226(2)	53(3)*
C(31)	2558(17)	5700(6)	4418(3)	$131(9)^*$
C(32)	1991(19)	5845(7)	4785(3)	$196(12)^*$
C(33)	1096(20)	6428(8)	4085(5)	$146(10)^*$
C(34)	1792(21)	6974(8)	4093(6)	208(13)*
C(41)	1390(14)	5714(8)	3024(4)	$129(8)^+$
C(42)	1296(20)	6384(7)	2933(5)	$172(11)^*$
$C(43)$ #	$-230(13)$	5635(12)	3524(7)	84(12)*
C(43')#	$-102(18)$	5236(12)	3395(8)	107(19)*
$C(44)$ #	$-897(45)$	5081(18)	3333(10)	147(22)*
C(44')#	$-1165(26)$	5572(13)	3201(7)	88(12)*
C(51)	5163(10)	3911(5)	3649(3)	$81(5)$ *
C(52)	6169(11)	4369(6)	3726(4)	114(7)*
C(53)	4185(10)	4052(5)	4276(2)	66(4)*
C(54)	4898(13)	3485(5)	4440(3)	89(5)*
C(61)	1176(13)	1543(5)	4089(3)	78(5)*
C(62)	2207(15)	1097(7)	4107(4)	130(8)*
C(63)	2205(12)	2378(5)	4462(3)	72(5)*
C(64)	1529(17)	2175(6)	4810(3)	143(9)*
C(71)	–482(12)	2492(8)	3534(5)	121(7)*
C(72)	$-1178(15)$	3013(8)	3379(4)	144(8)*
C(73)	1133(13)	2350(6)	3054(3)	$85(5)^*$
C(74)	1117(16)	1662(7)	2955(4)	130(8)*
C(91)#	5000	4677(27)	2500	69(16)
C(92)#	5000	3616(27)	2500	98(17)
C(93)#	5000	2958(8)	2500	$125(17)^*$
C(94)#	4260	3719	2379	287(34)*
$C(95)$ #	3644	4589	2326	174(24)*
C(96)#	3549	3885	2317	95(14)
C(97)#	4310	4293	2439	$106(13)^*$
$C(98)$ #	4539	5039	2434	165(28)*
C(99)#	3931	3223	2350	192(22)*

 α Atoms have occupancies of 1.0 except as marked with $\#$ above: I(1), 0.50; I(2), 0.50; C(43), 0.50; C(43'), 0.50; C(44), 0.50; C(44'), 0.50; C(91), 0.20; C(92), 0.22; C(93), 0.38; C(94), 0.68; C(95), 0.50; C(96), 0.40; C(97), 0.62; C(98), 0.47; C(99), 0.62. * For atoms marked with *, the equivalent isotropic *U* is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

positions and refined riding **on** the atom to which they were attached. Calculations were carried out using programs in the SHELXTL package. Metrical details are listed in the supplementary tables.

Results and Discussion

Triphosphazane Reactions. Reactions of **3,** oxidation by elemental sulfur, selenium, ozone, and phenyl azide or borane $(BH₃)$ coordination, occur with high regioselectivity at the exo phosphorus positions. Only in reactions with S₈ and O₃ have trisubstituted products been obtained. Previously we reported that 3 reacts with S_8 in 10 min at 25 \degree C to form 4 quantitatively **(eq** 1, Scheme 1);2b only after **3/&** reaction mixtures are heated in refluxing toluene for 48 h does oxidation at the central

phosphorus occur to form 9 (eq 2). Ozone, the only [O] oxidizing agent of several we examined which would cleanly oxidize **3** to P=O bond containing products, reacts readily first at the exo and then more slowly at the endo phosphorus position. Here, reactions at the exo and endo positions are sufficiently close in rate that it was not possible to obtain the dioxide $C_6H_4N_2[P (O)(NEt_2)_2PNEt_2$ (10) free of the trioxide $C_6H_4N_2[P(O) (NEt_2)_2P(O)NEt_2(11)$. However, even though regioselectivity between endo and exo positions is small, there was **no** evidence for reaction first at the endo position. Examination of product mixtures by ³¹P NMR analysis immediately after reaction onset and periodically during reaction showed **no** evidence for formation of endo monooxide or unsymmetrically substituted, endo-exo, dioxide products. In contrast, as with &, reactions of **3** with elemental Se, PhN₃, or BH₃·THF proceed easily to the exodioxidized or coordinated products $C_6H_4N_2[P(Se)(NEt_2)_2]_2$ - $PNEt_2$ (12), $C_6H_4N_2[P(NPh)(NEt_2)_2]_2PNEt_2$ (13), and C_6H_4 - $N_2[P(BH_3)(NEt_2)_2]_2PNEt_2$ (14), respectively. No monosubstituted products are seen. Even under more forcing conditions, **no** trisubstituted products form. The new triphosphazanes 11-14 exhibit the expected spectral characteristics. All show the expected mass spectral parent ions and 31P NMR doublet resonances in regions characteristic of tris(amin0)phosphine oxides,²⁷ selenides,²⁸ imines,²⁹ and boranes.^{27,30-32} 14 displays a characteristic ¹¹B NMR resonance at δ -33.4.³¹ The structures of 9 and **12** were also confirmed by single-crystal X-ray analysis (see below).

Selective reactivity at the triphosphazane endo phosphorus, apparently due to the size-restricted molecular cleft at that position, is seen further in $BH₃$ coordination and $CH₃I$ quaternization of 4. 4 reacts slowly and incompletely with B_2H_6 or BH3THF to form the endo-BH3-substituted 15 (Scheme **2).** Typically, reactions reach equilibrium in 15 min at 25 $\,^{\circ}$ C; these reactions contain both uncoordinated 4 and BH₃-coordinated 4. Under vacuum, $BH₃$ can be removed from 15, and 4 re-forms. 4 reacts slowly but quantitatively with $CH₃I$ to form the quaternary salt 16 (Scheme 2, eq 4). Because 15 is extensively dissociated in solution, its characterization is based **on** 31P and **IlB** NMR spectra of the adduct in solution. **15** and **16** show 31P NMR doublet resonances at δ 66.4 and 65.7 characteristic of the exo $(amino)_3P=S$ groups.^{27,33} The BH₃-coordinated endo phosphorus of 15 exhibits a broad ¹¹B NMR resonance at δ -51.8.

- (27) Crutchfield, M. **M.;** Dungan, C. H.; Letcher, J. H.; Mark, **V.;** Van Wazer, **J.** R. *Topics in Phosphorus Chemistry;* Interscience: New York, 1963; Vol. 5.
- (28) Kroshefsky, R. D.; Weiss, R.; Verkade, **J.** *G. Inorg. Chem.* **1979, 18,** 469.
- (29) Abel, E. W.; Mucklejohn, **S. A.** *Phosphorus Sulfur* **1981.9,** 235.
- (30) Xi,S. K.;Schmidt, H.; Lensink, C.;Kim, **S.;** Wintergrass, L. M.; Daniels, L. M.; Jacobson, R. **A.;** Verkade, J. *G. Inorg. Chem.* **1990, 29,** 2214.
- (31) Kanjolia, R. K.; Srivastava, D. K.; Watkins, C. L.; Krannich, L. K. *Inorg. Chem.* **1989, 28,** 2241.
- (32) Rudolph, R. W.; Schultz, C. W. *J. Am. Chem. SOC.* **1971, 93,** 6821.

Scheme 2

For 16, the ³¹P{¹H} NMR triplet resonance at δ 62.1 and the ¹H NMR area **3** CH3 doublet resonance at 6 **3.18** are as expected for a triphosphazane quaternized at the endo phosphorus. The structure of **16** has been confirmed also by single-crystal X-ray analysis (see below).

The $4/BH_3$ and $4/CH_3I$ reactions are of interest because both are suprisingly slow and from the $4/BH_3$ reaction there is evidence that the thermodynamic basicity of theendo phosphadiazolecenter is much lower than expected for tris(amino)phosphines.^{34,35} Phosphines like $(Et_2N)_3P$ coordinate BH₃³⁴ or are quaternized^{36,37} rapidly and quantitatively. The reactions have large equilibrium constants. That reactions with 4 are slower is consistent with the cleft at the endo phosphorus center being highly sterically restricted. The cleft appears barely large enough to allow entry of the $BH₃$ group or to accommodate the trigonal bipyamidal reaction intermediate which likely is involved in the quatemization process.38 The low basicity of the endo phosphadiazole center is shown by the incomplete $BH₃$ coordination to 4; at equilibrium at 25 °C both 15 and 4 are present. The experimentally determined equilibrum constant for the 4/BH₃·THF reaction (in *eq 5*), as determined by integration of peak areas in the ³¹P NMR

$$
4 + BH3 \cdot THF \rightleftharpoons 4 \cdot BH3 + THF
$$
 (5)

spectrum, is 15 ± 4 . Suprisingly, the basicities of 4 and THF are comparable. Although equilibrium constants for other tris- (amin0)phosphine-borane association reactions appear unavailable, qualitatively such reactions generally go completely to isolable adducts. 34 It is not clear why basicity at the endo phosphorus of 4 is low; however, it may be due to electronwithdrawing properties of the two exo $(Et_2N)_2P(S)$ groups.

Derivatization of endo phosphorus centers in the skeletally stabilized phosphazanes is possible by replacement of $Et₂N-$ or C1-substituents of the triphosphazanes **4** and **5.** As with oxidation and Lewis acid coordination reactions, functional reagents need to be sterically relatively small. Reactions of 4 with protic acids, analogous to the 4/HCl reaction reported earlier,^{2b} occur easily with little evidence for cleavage of phosphazane P-N bonds (Scheme 3, eqs 6 and 7). \blacktriangleleft reacts with CF_3CO_2H and H_3PO_4 , cleaving the Et_2N- group and forming the new triphosphazanes **19** and **20. 4** with HBF4 in ether immediately yields the fluorotriphosphazane **18.** There is no evidence for intermediate phosphenium³⁹ tetrafluoroborate product formation, e.g. ${C_6}$ -

Scheme 3

 $H_4N_2[P(S)(NEt_2)_2]_2P_1^+BF_4^-$. It was not possible to completely remove **18** and **19** from the accompanying ammonium salt products or 20 from the simultaneously formed $BF_3·Et_2NH$; nevertheless, **18-20** could be characterized unambiguously from spectral data obtained on the mixtures. Similarly, chlorotriphosphazane **5** reacts with alcohols MeOH and EtOH and slowly with i-PrOH, to form respectively the alkoxytriphosphazanes **21- 23 (eq 8).** Again, as with the amine/5 reactions,2b only the P_I+BF₄-. It was not possi-

Figure 1. It was not possi-

Figure 1. It was not possi-

The simultaneously form

with alcohols MeOH and

with alcohols MeOH and

respectively the alkoxytrip

s with the amine/5 read
 $\begin{$

sterically nonbulky alcohols react. Although i-PrOH reacts slowly, t-BuOH does not. MeNH_2 , EtNH₂, and i-PrNH₂ react with 5 to form 24-26, respectively; t-BuNH₂ does not react.^{2b} **18-23** were obtained as uncrystallizable oils. All show characteristic AX_2 ³¹ $P{H}$ } NMR spectra consisting of area 2 doublet resonances2b between 6 **66.8** and **68.6** and area **1** resonances due to the substituted endo phosphorus atoms. **19** and **21-23** show the triplets characteristic of endo-phosphorus-substituted triphosphazanes; **18** displays a doublet of triplets due to $^1J_{\text{PF}}$ coupling (1184 Hz). **20** exhibits a triplet of doublets due to $\frac{2J_{\text{POP}}}{{\text{Pop}}$ coupling **(20.6** Hz) with the phosphorus of the phosphatesubstituent group. 4 and **5** derivatization reactions are relatively clean; the main impurity results from traces of water. The $4/H_3PO_4$ reactions, even after the H_3PO_4 is dried by treatment with P_4O_{10} , and the 5/ROH reactions invariably show impurity quantities of the phosphine oxide $C_6H_4N_2[P(S)(NEt_2)_2]_2P(O)H$ (8).^{2b}

The reduced reactivity at the central (endo) phosphorus of skeletally stabilized triphosphazanes **3-5** is similar to, but more pronounced than, that observed previously for the acyclic triphosphazane **Ph2PN(Me)PPhN(Me)PPh2,37** which in reaction with **Se** also showed regioselective formation of the exo disulfide Ph₂P(S)N(Me)PPhN(Me)P(S)Ph₂. Thus, the regioselectivity observed in 4 may not to be unique to the skeletally stabilized systems. It may be that reactivity of the internal P(II1) atoms of higher oligomers or phosphazane polymers will in general be greatly lowered.

Triphosphazane Structural Studies. NMR and X-ray structural studies of selected triphosphazanes in solution and in the solid state allow structure confirmation and the determination of detailed conformational information. X-ray analyses of the triphosphazane disulfide 4 were reported earlier;^{2b} we have now obtained data on three additional triphosphazanes, the diselenide $C_6H_4N_2[P(Se)(NEt_2)_2]_2PNEt_2(12)$, the trisulfide $C_6H_4N_2[P(S)-$

⁽³³⁾ Schmidpeter, **A.** Brecht, H. *Angew. Chem., Int. Ed. Engl.* **1967,6,945. (34)** (a) NBth, H.; Vetter, H.-J. *Chem.* Ber. **1963,96, 1298. (b) Holmes,** R.

R.; Carter, R. P., Jr. *Inorg. Chem.* 1963, 2, 1146.
(35) (a) Verkade, J. G. Coord. Chem. Rev. 1972/1973, 9, 1. (b) Reiss, J. G.
Phosphorus Sulfur 1986, 27, 93. (c) Verkade, J. G.; King, R. W.; Heitsch,
C. W. *Inorg. Chem.*

⁽³⁶⁾ Ewart, **G.;** Payne, D. **S.;** Porte, A. L.; Lane, A. P. *J. Chem. SOC.* **1962, 3984.**

⁽³⁷⁾ Keat, **R.; Sim,** W.; Payne, D. **S.** *J. Chem. SOC. A* **1970, 2715.**

⁽³⁸⁾ March, J. *Advanced Organic Chemistry,* 3rd **4.;** John Wiley and Sons: **New** York, **1985.**

⁽³⁹⁾ Cowley, **A. H.;** Kemp, **R. A.** *Chem. Rev.* **1985,85, 367.**

Figure 1. Structure and numbering scheme for $C_6H_4N_2[P(S)(NEt_2)_2]_2P$ - $(S)NEt₂$ (9). Thermal ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.

Figure 2. Structure and numbering scheme for $C_4H_4[P(Se)(NEt_2)_2]_2$ -PNEt₂ (12). Thermal ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.

 \bigcirc ii

Figure 3. Structure and numbering scheme for $\{C_6H_4N_2[P(S)(NEt_2)_2]_2P-$ (CH3)NEt2)I **(16).** Thermal ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.

 $(NEt₂)₂P(S)NEt₂$ (9), and the endo-methyl-quaternized **jC6H4N2[P(S)(NEt2)2J2P(CH3)NEt2JI (16).** Compounds **4,9, 12,** and **16** allow comparisons of the effects of exo substitutent size and endo group substitution on triphosphazane conformations. Finally, the conformations of these triphosphazanes in the solid state can be compared with those obtained by $31P$ NMR spectroscopy in solution.

The structures of **9, 12,** and **16** are shown in Figures 1-3. These can be compared with one another and with the previously reported triphosphazane disulfide $C_6H_4N_2[P(S)(NEt_2)_2]_2PNEt_2$ **(4).2b 9** and **16,** as with **4,** adopt essentially symmetrical conformations in which the exo phosphorus $P-E$ ($E = S$, Se , $CH₃$) groups and the P(2)-E,L groups (atom or lone-pair electrons) are on opposite sides of the C_6N_2 molecular plane. In all cases the C_6N_2 atoms are coplanar. The phosphadiazole phosphorus and the two exo phosphorus atoms are displaced in

(a) Distances, A					
$S(1) - P(1)$	1.933(2)	$S(2) - P(2)$	1.922(2)		
$S(3)-P(3)$	1.938(2)	$P(1) - N(1)$	1.723(4)		
$P(1) - N(3)$	1.655(4)	$P(1) - N(4)$	1.633(4)		
$P(2) - N(1)$	1.738(3)	$P(2) - N(2)$	1.704(3)		
$P(2) - N(5)$	1.622(4)	$P(3)-N(2)$	1.718(3)		
$P(3) - N(6)$	1.649(4)	$P(3)-N(7)$	1.647(4)		
$N(1) - C(1)$	1.436(5)	$N(2) - C(2)$	1.433(5)		
$C(1) - C(2)$	1.395(6)				
	(b) Angles, deg				
$S(1) - P(1) - N(1)$	111.2(1)	$S(1) - P(1) - N(3)$	115.7(1)		
$N(1) - P(1) - N(3)$	101.8(2)	$S(1) - P(1) - N(4)$	112.9(2)		
$N(1) - P(1) - N(4)$	108.1(2)	$N(3) - P(1) - N(4)$	106.2(2)		
$S(2) - P(2) - N(1)$	114.9(1)	$S(2) - P(2) - N(2)$	116.3(1)		
$N(1) - P(2) - N(2)$	91.9(2)	$S(2) - P(2) - N(5)$	114.2(1)		
$N(1) - P(2) - N(5)$	110.8(2)	$N(2) - P(2) - N(5)$	106.4(2)		
$S(3)-P(3)-N(2)$	110.7(1)	$S(3)-P(3)-N(6)$	113.5(2)		
$N(2)-P(3)-N(6)$	101.1(2)	$S(3)-P(3)-N(7)$	112.4(1)		
$N(2) - P(3) - N(7)$	108.4(2)	$N(6)-P(3)-N(7)$	110.1(2)		
$P(1)-N(1)-P(2)$	118.8(2)	$P(1) - N(1) - C(1)$	128.2(3)		
$P(2)-N(1)-C(1)$	111.4(3)	$P(2)-N(2)-P(3)$	128.1(2)		
$P(2)-N(2)-C(2)$	112.4(3)	$P(3)-N(2)-C(2)$	119.4(3)		
$P(2) - N(5) - C(51)$	122.7(4)	$P(2)-N(5)-C(53)$	117.6(4)		
$C(51) - N(5) - C(53)$	115.7(4)				

Table **6.** Selected Structural Parameters for $C_6H_4N_2[P(Se)(NEt_2)_2]_2PNEt_2$ (12)

opposite directions from the C_6N_2 molecular plane, and these displacements depend strongly **on** whether the phosphadiazole phosphorus is λ^3 (as in **4** and **12**) or λ^4 (as in **9** and **16**) in type. In 9 and 16 the dihedral angles between the C_6N_2 and N_2P planes $[N(2)/P(3)/N)3]$ are 2.7 and 3.7°, respectively. In contrast the analogous interplane angles in **4** and **12** are 21.2 and 21.4'. The P(1), P(2), and P(3) atom displacements from the C_6N_2 planeof **12are-O.13,0.47,and-O.37 A.** ConsequentlytheP-N-P-N-P skeletal zigzag arrangement of the $\lambda^4 - \lambda^3 - \lambda^4$ sytems is greater than that of the $\lambda^4 - \lambda^4 - \lambda^4$ systems, a situation which would likely cause significant conformational differences if also expressed in oligomer or polymer chain systems.

The new triphosphazanes and the previously reported **4** have suprisingly similar structural parameters. Bond distances and angles are shown in Tables **5-7. In** all cases, the mean ex0 (bonds to the phosphadiazole ring) and endo (bonds within the phosphadiazole ring) skeletal P-N distances are between 1.67 and 1.76 Å, in the range expected.^{2,3,5,7,10,40-42 Differences in exo and} endo P-N distances are noted, depending on the state of phosphorus oxidation; in **4** and **12,** which have only the outer two

Table 7. Selected Structural Parameters for ${C_6H_4N_2[P(S)(NEt_2)_2]_2P(CH_3)NEt_2}I (16)$

(a) Distances, A					
$P(1) - S(1)$	1.926(5)	$P(1) - N(1)$	1.735(8)		
$P(1) - N(3)$	1.633(9)	$P(1) - N(4)$	1.592(10)		
$P(2)-N(1)$	1.685(8)	$P(2) - N(2)$	1.683(8)		
$P(2) - N(5)$	1.594(8)	$P(2) - C(21)$	1.747(8)		
$P(3) - S(2)$	1.936(4)	$P(3)-N(2)$	1.735(8)		
$P(3) - N(6)$	1.640(9)	$P(3) - N(7)$	1.625(9)		
$N(1) - C(1)$	1.420(13)	$N(2) - C(2)$	1.434(14)		
$N(5) - C(51)$	1.477(13)	$N(5) - C(53)$	1.474(11)		
$C(1) - C(2)$	1.419(15)				
	(b) Angles, deg				
$S(1) - P(1) - N(1)$	109.3(3)	$S(1) - P(1) - N(3)$	115.9(4)		
$N(1) - P(1) - N(3)$	102.1(4)	$S(1) - P(1) - N(4)$	112.7(4)		
$N(1) - P(1) - N(4)$	108.9(5)	$N(3) - P(1) - N(4)$	107.2(5)		
$N(1) - P(2) - N(2)$	94.4(4)	$N(1) - P(2) - N(5)$	112.1(4)		
$N(2) - P(2) - N(5)$	113.5(4)	$N(1) - P(2) - C(21)$	111.3(4)		
$N(2)-P(2)-C(21)$	111.6(5)	$N(5)-P(2)-C(21)$	112.7(4)		
$S(2) - P(3) - N(2)$	107.6(3)	$S(2)-P(3)-N(6)$	117.7(3)		
$N(2) - P(3) - N(6)$	101.8(4)	$S(2) - P(3) - N(7)$	114.0(4)		
$N(2) - P(3) - N(7)$	109.0(4)	$N(6)-P(3)-N(7)$	105.9(4)		
$P(1) - N(1) - P(2)$	121.8(5)	$P(1) - N(1) - C(1)$	126.8(7)		
$P(2)-N(1)-C(1)$	110.8(6)	$P(2) - N(2) - P(3)$	121.4(5)		
$P(2)-N(2)-C(2)$	111.3(6)	$P(3)-N(2)-C(2)$	126.2(7)		
$P(2) - N(5) - C(51)$	123.7(6)	$P(2) - N(5) - C(53)$	118.2(6)		
$C(51) - N(5) - C(53)$	118.0(8)				

phosphorus atoms oxidized, the endo distances are ca. 1.67 **A,** significantly shorter than the exo distances of 1.75-1.76 **A.** In contrast, in **9,** where all phosphorus atoms are oxidized, the endo and exo distances are closely similar at 1.72 **A.** The mean exo P-N-P angles are between 121.8 and 123.4°, as expected; the angles in **9** are not significantly larger than those in **4** and **12.** Apparently, the presence of the extra S atom or CH₃ group in the molecular cleft does not crowd the molecule enough to cause a widening of these bond angles. However, the individual angles P(1)-N(1)-P(2) and P(2)-N(2)-P(3) in **9** of 118.8 and 128.1' are quite different. This situation, which is not seen in **4** and **12,** may arise because the molecule adopts a twisted, unsymmetrical conformation in the solid state (see below).

The triphosphazane conformations, especially the orientation of P-E/P-L ($E =$ bonded groups, atoms; $L =$ lone-pair electrons) groups relative to one another and to the phosphazane P-N skeleton, can be compared. In order to define and easily compare conformations, individual group orientations are designated in terms of a dihedral angle θ (+ angle above and - angle below the horizontal plane) between the plane which contains the P-E/ P-L vector and the group's adjacent P_2N plane (Figure 4A). The molecule is oriented such that the C_6N_2 plane is horizontal, with the phosphorus atoms forward. For two P-E/P-Lgroups relative to a given P_2N plane (one P-E group on each side), two angles, θ and θ' , are given; e.g., a diphosphazane $[(RP)_2NR']$ conformation where the P-L vectors are "cis" and coplanar with the P_2N molecular plane is defined as (in deg) $\theta = \theta' = 0$. In order to define orientations of the three P-E groups of the triphosphazanes **4, 9, 12, and 16, four angles are used:** θ_1 , θ_1' , θ_2 , θ_2' . This approach is preferable to more qualitative designations or to one where angles are defined relative to some "average" molecular plane, since the degrees to which phosphorus atoms lie away from the C_6N_2 molecular planes vary widely. Intervector angles, i.e. angles between adjacent pairs of P-E or P-L groups, are given by Θ , which is the sum $|\theta| + |\theta'|$, as an angle less than 180°. The P-E group orientations around each P₂N plane in 4, 9, 12, and 16, viewed down the $P(3) \cdots P(2)$ and $P(2) \cdots P(1)$ vectors, are shown in Figure **4B-E.**

Figure 4. Dihedral angle relationships in triphosphazanes: (A) definition of θ and θ' ; (B-D) dihedral angles between the P(3)-E and P(2)-E,L groups as viewed down the $P(3) \cdots P(2)$ and $P(2) - E$ and $P(1) - E$ vectors in **4,** *9,* **12,** and **16.**

Table 8. Conformational Angles in **4,** *9,* **12,** and **16**

	interplane angles, ^a deg				inter P-E/P-L angles, ^b deg	
compd	θ,	θ۱′	θ2	Θ_{2}	θ,	θ,
4	106	-40	-37	109	146	146
9	120	-64	-50	35	175	85
12	110	-35	-42	103	145	145
16	25	-52	-53	24	77	77

^a Dihedral angle between P-E/P-L group vector and adjacent P_2N plane; $+$ and $-$ refer to angles above and below the P_2N plane, respectively. b Angle between P-E/P-L groups on adjacent phosphorus atoms.

The θ and θ conformational angles in 4, 9, 12, and 16 are given in Table 8. Because of the structural constraints imposed on the central phosphadiazole phosphorus, its P-E or P-L group always has a negative θ angle in the range -35 to -64° . **4, 12, and 16** are within experimental error symmetrical; in all cases the orientations of the exo $P-E$ groups relative to the central $P-S$ (or P-L) unit are close to equal (Figure 4B,D,E). The **P=S** and P=Se groups of **4** and **12** are close to trans oriented relative to the central P-L (Figure 4B,D) with *8* values ranging from 140 to 146'. The *8* angles in **4** and **12** are remarkably similar, even though van der Waals radii of **S** (1 .80 **A)** and Se (1.90 A)43 are somewhat different. Seemingly, the triphosphazane skeletal conformation is insensitive to relatively small changes in the exo P-E groups, a result which might be important to higher phosphazane and polyphosphazane conformational properties. In 16, the P=S bonds are rotated forward and are approximately orthogonal to the P-L units (Figure 4E; $\theta_1 = \theta_2 = 77^{\circ}$). In contrast to the situtation in **4,12,** and **16,** the trisulfide **9** adopts an unsymmetrical conformation (Figure 4C) in which θ_1 and θ_2 angles are 175 and **85',** respectively. How the conformations are determined by the particular groups present in a given

⁽⁴⁰⁾ Zeiss, W.; Schwarz, W.; **Has, H.** *Angew. Chem., Int. Ed. Engl.* **1977,** *16,* 407.

⁽⁴¹⁾ Gallicano, **K.** D.; Paddock, N. **L.** *Can. J. Chem.* **1985,** *63,* 314.

⁽⁴³⁾ Powell, P.; Timms, P. *The Chemistry of the Non-Metals;* Chapman and Hall: London, 1974.

triphosphazane is not clear; however, as more data are collected, this aspect of triphosphazane structural chemistry will be examined further.

The 3lP NMR spectra of selected triphosphazanes were examined as a function of temperature in order to obtain information about the conformational properties of the molecules in solution, barriers to rotation around the P-N skeletal bonds, and the extent to which the conformational properties are affected by substituents in the molecular cleft. The triphosphazanes examined were the parent triphosphazane **3,** the disulfide series NH_2 ; **7**, $X = N_3$; **8**, $X = H(O)$; $X = OP(O)(OH)_2$, **20**], the diadduct $C_6H_4N_2[P(BH_3)(NEt_2)_2]_2PNEt_2$ (14), the diselenide 12, the trioxidized series $C_6H_4N_2[P(E)(NEt_2)_2]_2P(E)NEt_2$ (11, $E = O$; 9, $E = S$), and ${C_6H_4N_2[P(S)(NEt_2)_2]_2P(CH_3)NEt_2}I$ **(16).** These were selected because they are representative of the various classes, and because they could be obtained pure, reliable NMR data could be obtained. $C_6H_4N_2[P(S)(NEt_2)_2]_2PX$ [4, $X = NEt_2$; **5**, $X = Cl$; **6**, $X =$

Triphosphazane **3,** disulfide **4,** and diselenide **12** and disulfide derivatives **5-8,14,16,** and **20** all show their characteristic spectral patterns over the entire temperature ranges studied. All were examined from above ambient temperature **(70-105** "C) down to -90 °C. 7, an azide, was examined only between +25 and -90 ^oC. The ²J_{PNP} values observed for the $\lambda^3 - \lambda^3 - \lambda^3$ (3), $\lambda^4 - \lambda^3 - \lambda^4$ $(4-7, 12, 14, 20)$, and $\lambda^4 - \lambda^4 - \lambda^4 (8, 9, 11, 16)$ series are consistent with those seen for analogous unsymmetrical diphosphosphazanes, $9-19$ especially those which contain bulky substitutents. $9,11,12$ The absolute $2J_{\text{PNP}}$ values (the signs of $2J_{\text{PNP}}$ were not determined) in all but **3** and **8** are nearly temperature independent, varying in general by less than 10% over the temperature range studied. This indicates that essentially unrestricted rotation occurs around skeletal P-N bonds over the range studied and that the conformational population is not very affected by temperature. Barriers to rotation (ΔG^*) around P-N bonds are in the range expected for sterically unrestricted acyclic phosphazanes.44-47 **In 3 and 8 between** $+105$ **and** -90 **°C the** $2J_{PNP}$ **values decrease from 52.5** to **29.6** Hz and from **13.0** to **5.5** Hz, respectively. It has been established previously that (i) $2J_{\text{PNP}}$ couplings depend on the rotational angle around the P-N-P bond, $10,12,13,18,19$ (ii) acyclic diphosphosphazanes adopt one of two conformations in which the phosphorus lone-pair electrons are either mutually cis or are in a trans arrangement, $9-12$ and (iii) the trans conformation is favored by systems with large substituents **on** the skeletal phosphorus and nitrogen atoms.^{9,12,14} Generally, for a given diphosphazane type, e.g. $P(III)-P(III)$ or $P(III)-P(V)$, the cis and trans conformations are associated with relatively larger and smaller $^{2}J_{\text{PNP}}$ values, respectively.^{10,12,48} Thus, for the triphosphazanes studied here we conclude that conformations analogous to those seen in the solid state predominate in solution. For **3** and 8 , where $^{2}J_{\text{PNP}}$ decreases with temperature, it seems likely that the trans:cis conformation ratio increases slightly as the temperature is decreased.

In contrast to the other triphosphazanes studied, the trisulfide **9** and trioxide **11** show restricted P-N bond rotation around exo P-N bonds at low temperatures. The 3IP NMR spectrum of **9** as a function of temperature is shown in Figure **5.** Both **9** (Figure **5A)** and **11** displayAX2 spectra at **25** *OC.* **Upon** cooling, multiplet broadening followed by peak collapse occurs and the spectra undergo transitions to complex patterns, which in the case of **9** is clearly the result of a mixture of conformers. **9** undergoes coalesence (T_c) at -75 °C, which gives an activation barrier ΔG^*

- (44) Cowley, A. H.; Dewar, M. J. *S.;* Jackson, W. R. J. *Am. Chem. SOC.* **1968.** *90.* 4185.
- (45) DiStefano, S.; Goldwhite, H.; Mazzola, E. *Org. Magn. Reson.* **1974,6,** (46) Burdon, J.; Hotchkiss, J. C.; Jennings, W. B. J. *Chem. SOC., Perkfn* 1.
- *Trans. 2* **1976,** 1052.
- (47) Dakternieks, D.; DiGiacomo, R. *Phosphorus Sulfur* **1985,** *24,* 217.
- **(48) Simonnin,** M.-P.; Lequan, R.-M.; Wehrli, *F.* W. *J. Chem. SOC., Chem.* Commun. **1972,** 1204.

Figure 5. ³¹P{¹H} NMR spectra of $C_6H_4N_2[P(S)(NEt_2)_2]_2P(S)NEt_2$ *(9)* at **(A) 27 'C** and (B) **-1** 10 **OC.** In spectrum B, major features are from **9A;** minor features from **9B** and **9C** are at *x* and *y,* respectively.

of 39.7 kJ/mol.^{49,50} The spectrum of 11 is not sufficiently resolved at low temperature to allow a detailed assignment; hence, only an estimated coalesence temperature of ca. -75 °C was obtained. At -1 **10 OC** (Figure **5B), 9** exhibits resonances attributable to three conformers, **9A-C** in an **87:13:<1** mole ratio. **9A** gives an

AMX type spectrum in which the three phosphorus atoms are inequivalent; the ${}^{2}J_{\text{PNP}}$ couplings between the endo and exo phosphorus atoms are 8.8 and **43.5 Hz. In** contrast, **9B** and **9C** give **AX2** patterns characteristic of more highly symmetrical structures. **9B** and **9C** display ${}^{2}J_{PNP}$ values of 7 and 43 Hz, respectively.

Assuming we can correlate the $^{2}J_{\text{PNP}}$ values with approximate conformations around P-N-P bond units, we can suggest possible structures for $9A-C.$ 9A, would have one exo $P(S)(NEt_2)_2$ group rotated such that the exo and endo $P=$ S bonds are approximately trans and the other $P(S)(NEt_2)_2$ group rotated such that they are in cis orientations. **9B** and **9C** would be symmetrical, **9B** with both exo P=S bonds trans to the endo P=S bond and **9C** with

⁽⁴⁹⁾ Sandstrom, J. *Dynamic NMR Spectroscopy;* Academic **Press:** London, 1982.

⁽⁵⁰⁾ Kost, D.; Carlsen, E. H.; Raban, M. *Chem. Commun.* **1971,** 656.

Skeletally Stabilized Triphosphazanes

both **P=S** bonds cis to the center endo bond. The proposed conformation for **9A** would be closely similar to what is seen in the solid state and is consistent with the fact that the lowest energy conformation for both **9** and **11** may be the same in the solid state as it is in solution.

Examination of the 'H NMR spectra of **4** and **16** as a function of temperature provides insight into the conformational restrictions that exist for the $(CH_3CH_2)_2N$ group in the triphosphazane molecular cleft. In addition, the effect on conformation of steric bulk in the cleft can be probed. Except for the endo $(CH_3CH_2)_2N$ group resonances, the 1H spectral resonances are temperature independent down to **-90** "C. Because of spectral overlaps between $(CH_3CH_2)_2N$ group and other resonances, it was advantageous to observe the endo $(CH_3CH_2)_2N$ methyl (CH_3) resonances of 16 and the methylene (CH₂) resonance of 4. The $(CH_3CH_2)_2N CH_3$ resonance of 16 between 25 and $-40 °C$ is shown in Figure 6. At **25** "C (Figure 6A) one area **6** triplet due to endo CH₃ groups (δ 1.38; ³ J_{HP} = 7.1 Hz) is observed. As the temperature is lowered, the triplet broadens (Figure 6B) and coalescence occurs (Figure 6C; $T_c = -13 \text{ °C}$). Further cooling yields two area **3** triplets (6 **1.31** and **1.40)** (Figure **6D).** At low temperatures the exo $(CH_3CH_2)_2N$ and P-CH₃ methyl resonances are unchanged. The endo $(CH_3CH_2)_2N CH_2$ resonance of 4 between 0 and -90 °C goes from one complex multiplet to two distinct equal-area multiplets (δ 3.30 and 2.40) $(T_c = -50 \text{ °C})$. At -90 °C the exo (CH₃CH₂)₂N resonances of **16** are generally broadened but otherwise unchanged. Barriers to rotationaround the phosphadiazole exo P-N bond in **4** and **16** are calculated to be **42.3** and **54.5** kJ/mol, respectively.

The observed barriers to rotation around the endo $(\rm CH_3CH_2)_2N$ phosphorus-nitrogen bonds in **4** and **16** differ measurably but are in the range of those observed for other R_2N -substituted phosphadiazoles. In the $C_6H_4(NMe)_2P-NR_2$ series, barriers of **38.0, 45.1,** and **54.3** kJ/mol for the NMez, NEtz, and N-i-Prz derivatives, respectively, were measured.⁵¹ It would be of interest to compare the endo $(CH_3CH_2)_2N$ group rotational properties of **4** and **16** with those of **9,** which contains a sulfur on phosphorus in the cleft. However, because restricted rotation around exo P-N bonds becomes significant as the temperature is lowered, general ¹H spectral broadening occurs and detailed ¹H spectral analysis is not possible. The higher barriers observed for **9** and **16** might be attributed to the additional S atom or CH₃ group in the molecular cleft. The barrier in **16** is higher than that in 4, consistent with the fact that the effective size of a CH₃ group is larger than that of a S atom (van der Waals radii: CH₃, 4.6 \hat{A} ; S, 3.6 \hat{A}).⁴³ Because two distinct CH₃ or CH₂ resonances are seen in the "frozen" state, it follows that the $CH₃CH₂$ groups are not located symmetrically relative to the main molecular plane but are oriented such that they become inequivalent. Such a

Figure 6. ¹H NMR spectra of the $(CH_3CH_2)_2N$ methyl groups of ${C_6H_4N_2[P(S)(NEt_2)_2]}_2P(CH_3)NEt_2]1 (16)$ at $\overline{(A)}$ 25 °C, $\overline{(B)}$ 0 °C, $\overline{(C)}$ -13 °C, and (D) -40 °C.

conformation is approximately assumed by the endo $(CH_3CH_2)_2N$ groups in **4** and **16** in the solid state, **so** we suggest that this might be the lowest energy conformation for the endo $(CH_3CH_2)_2N$ group in the triphosphane systems. The R groups of the $C_6H_4(NMe)_2PNR_2$ series are also inequivalent in the frozen state;⁵¹ hence this property appears unrelated to triphosphazane molecular cleft chacteristics.

Acknowledgment. We gratefully acknowledge support of this work by National Science Foundation Grants CHE **83 12856** and CHE **87 1495 1** and the donors of the Petroleum Research Fund, administered by the American Chemical Society.

Supplementary Material Available: Tables of crystal data and refinement details, anisotropic thermal parameters, hydrogen atom positions, complete bond distances and angles, and least squares planes (38 pages). Ordering information is given **on** any current masthead page.

⁽⁵¹⁾ Jennings, **W. B.;** Randall, D.; Worley, **S.** D.; Hargis, J. H. J. *Chem.* **Soc.,** *Perkin Trans.* **2 1981, 1411.**